Computer Science > Computation and Language
[Submitted on 5 Aug 2022]
Title:Towards No.1 in CLUE Semantic Matching Challenge: Pre-trained Language Model Erlangshen with Propensity-Corrected Loss
View PDFAbstract:This report describes a pre-trained language model Erlangshen with propensity-corrected loss, the No.1 in CLUE Semantic Matching Challenge. In the pre-training stage, we construct a dynamic masking strategy based on knowledge in Masked Language Modeling (MLM) with whole word masking. Furthermore, by observing the specific structure of the dataset, the pre-trained Erlangshen applies propensity-corrected loss (PCL) in the fine-tuning phase. Overall, we achieve 72.54 points in F1 Score and 78.90 points in Accuracy on the test set. Our code is publicly available at: this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.