Computer Science > Robotics
[Submitted on 4 Aug 2022]
Title:Monte-Carlo Robot Path Planning
View PDFAbstract:Path planning is a crucial algorithmic approach for designing robot behaviors. Sampling-based approaches, like rapidly exploring random trees (RRTs) or probabilistic roadmaps, are prominent algorithmic solutions for path planning problems. Despite its exponential convergence rate, RRT can only find suboptimal paths. On the other hand, $\textrm{RRT}^*$, a widely-used extension to RRT, guarantees probabilistic completeness for finding optimal paths but suffers in practice from slow convergence in complex environments. Furthermore, real-world robotic environments are often partially observable or with poorly described dynamics, casting the application of $\textrm{RRT}^*$ in complex tasks suboptimal. This paper studies a novel algorithmic formulation of the popular Monte-Carlo tree search (MCTS) algorithm for robot path planning. Notably, we study Monte-Carlo Path Planning (MCPP) by analyzing and proving, on the one part, its exponential convergence rate to the optimal path in fully observable Markov decision processes (MDPs), and on the other part, its probabilistic completeness for finding feasible paths in partially observable MDPs (POMDPs) assuming limited distance observability (proof sketch). Our algorithmic contribution allows us to employ recently proposed variants of MCTS with different exploration strategies for robot path planning. Our experimental evaluations in simulated 2D and 3D environments with a 7 degrees of freedom (DOF) manipulator, as well as in a real-world robot path planning task, demonstrate the superiority of MCPP in POMDP tasks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.