Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 1 Jul 2022]
Title:Comparative Analysis of State-of-the-Art Deep Learning Models for Detecting COVID-19 Lung Infection from Chest X-Ray Images
View PDFAbstract:The ongoing COVID-19 pandemic has already taken millions of lives and damaged economies across the globe. Most COVID-19 deaths and economic losses are reported from densely crowded cities. It is comprehensible that the effective control and prevention of epidemic/pandemic infectious diseases is vital. According to WHO, testing and diagnosis is the best strategy to control pandemics. Scientists worldwide are attempting to develop various innovative and cost-efficient methods to speed up the testing process. This paper comprehensively evaluates the applicability of the recent top ten state-of-the-art Deep Convolutional Neural Networks (CNNs) for automatically detecting COVID-19 infection using chest X-ray images. Moreover, it provides a comparative analysis of these models in terms of accuracy. This study identifies the effective methodologies to control and prevent infectious respiratory diseases. Our trained models have demonstrated outstanding results in classifying the COVID-19 infected chest x-rays. In particular, our trained models MobileNet, EfficentNet, and InceptionV3 achieved a classification average accuracy of 95\%, 95\%, and 94\% test set for COVID-19 class classification, respectively. Thus, it can be beneficial for clinical practitioners and radiologists to speed up the testing, detection, and follow-up of COVID-19 cases.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.