Mathematics > Numerical Analysis
[Submitted on 1 Aug 2022 (v1), last revised 7 May 2023 (this version, v3)]
Title:Dominant Eigenvalue-Eigenvector Pair Estimation via Graph Infection
View PDFAbstract:We present a novel method to estimate the dominant eigenvalue and eigenvector pair of any non-negative real matrix via graph infection. The key idea in our technique lies in approximating the solution to the first-order matrix ordinary differential equation (ODE) with the Euler method. Graphs, which can be weighted, directed, and with loops, are first converted to its adjacency matrix A. Then by a naive infection model for graphs, we establish the corresponding first-order matrix ODE, through which A's dominant eigenvalue is revealed by the fastest growing term. When there are multiple dominant eigenvalues of the same magnitude, the classical power iteration method can fail. In contrast, our method can converge to the dominant eigenvalue even when same-magnitude counterparts exist, be it complex or opposite in sign. We conduct several experiments comparing the convergence between our method and power iteration. Our results show clear advantages over power iteration for tree graphs, bipartite graphs, directed graphs with periods, and Markov chains with spider-traps. To our knowledge, this is the first work that estimates dominant eigenvalue and eigenvector pair from the perspective of a dynamical system and matrix ODE. We believe our method can be adopted as an alternative to power iteration, especially for graphs.
Submission history
From: Kaiyuan Yang [view email][v1] Mon, 1 Aug 2022 16:43:21 UTC (658 KB)
[v2] Mon, 13 Mar 2023 16:35:58 UTC (966 KB)
[v3] Sun, 7 May 2023 13:23:54 UTC (967 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.