Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 Jul 2022]
Title:SdAE: Self-distillated Masked Autoencoder
View PDFAbstract:With the development of generative-based self-supervised learning (SSL) approaches like BeiT and MAE, how to learn good representations by masking random patches of the input image and reconstructing the missing information has grown in concern. However, BeiT and PeCo need a "pre-pretraining" stage to produce discrete codebooks for masked patches representing. MAE does not require a pre-training codebook process, but setting pixels as reconstruction targets may introduce an optimization gap between pre-training and downstream tasks that good reconstruction quality may not always lead to the high descriptive capability for the model. Considering the above issues, in this paper, we propose a simple Self-distillated masked AutoEncoder network, namely SdAE. SdAE consists of a student branch using an encoder-decoder structure to reconstruct the missing information, and a teacher branch producing latent representation of masked tokens. We also analyze how to build good views for the teacher branch to produce latent representation from the perspective of information bottleneck. After that, we propose a multi-fold masking strategy to provide multiple masked views with balanced information for boosting the performance, which can also reduce the computational complexity. Our approach generalizes well: with only 300 epochs pre-training, a vanilla ViT-Base model achieves an 84.1% fine-tuning accuracy on ImageNet-1k classification, 48.6 mIOU on ADE20K segmentation, and 48.9 mAP on COCO detection, which surpasses other methods by a considerable margin. Code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.