Computer Science > Computation and Language
[Submitted on 27 Jul 2022]
Title:Contextual Information and Commonsense Based Prompt for Emotion Recognition in Conversation
View PDFAbstract:Emotion recognition in conversation (ERC) aims to detect the emotion for each utterance in a given conversation. The newly proposed ERC models have leveraged pre-trained language models (PLMs) with the paradigm of pre-training and fine-tuning to obtain good performance. However, these models seldom exploit PLMs' advantages thoroughly, and perform poorly for the conversations lacking explicit emotional expressions. In order to fully leverage the latent knowledge related to the emotional expressions in utterances, we propose a novel ERC model CISPER with the new paradigm of prompt and language model (LM) tuning. Specifically, CISPER is equipped with the prompt blending the contextual information and commonsense related to the interlocutor's utterances, to achieve ERC more effectively. Our extensive experiments demonstrate CISPER's superior performance over the state-of-the-art ERC models, and the effectiveness of leveraging these two kinds of significant prompt information for performance gains. To reproduce our experimental results conveniently, CISPER's sourcecode and the datasets have been shared at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.