Computer Science > Data Structures and Algorithms
[Submitted on 26 Jul 2022 (v1), last revised 22 Nov 2022 (this version, v2)]
Title:Scheduling under Non-Uniform Job and Machine Delays
View PDFAbstract:We study the problem of scheduling precedence-constrained jobs on heterogenous machines in the presence of non-uniform job and machine communication delays. We are given as input $n$ unit size precedence-ordered jobs and $m$ related machines such that machine $i$ can execute up to $m_i$ jobs at a time. Each machine $i$ has an in-delay $\rho^{\mathrm{in}}_i$ and out-delay $\rho^{\mathrm{out}}_i$. Likewise, each job $v$ has an in-delay $\rho^{\mathrm{in}}_v$ and out-delay $\rho^{\mathrm{out}}_v$. In a schedule, job $v$ may be executed on machine $i$ at time $t$ if each predecessor $u$ of $v$ is completed on $i$ before time $t$ or on any machine $j$ before time $t - (\rho^{\mathrm{in}}_i + \rho^{\mathrm{out}}_j + \rho^{\mathrm{out}}_u + \rho^{\mathrm{in}}_v)$. The goal is to construct a schedule that minimizes makespan.
We consider schedules that allow duplication of jobs as well as schedules which do not. When duplication is allowed, we provide an asymptotic $\mathrm{polylog}(n)$-approximation algorithms both when duplication is allowed and when it is not. We also obtain a true $\mathrm{polylog}(n)$-approximation for symmetric machine and job delays. These are the first polylogarithmic approximation algorithms for scheduling with non-uniform communication delays.
We also consider a more general model, where the delay can be an arbitrary function of the job and the machine executing it: job $v$ can be executed on machine $i$ at time $t$ if all of $v$'s predecessors are executed on $i$ by time $t-1$ or on any machine by time $t - \rho_{v,i}$. We present an approximation-preserving reduction from the Unique Machines Precedence-constrained Scheduling (UMPS) problem, first defined in [DKRSTZ22], to this job-machine delay model. The reduction entails logarithmic hardness for this delay setting, as well as polynomial hardness if the conjectured hardness of UMPS holds.
Submission history
From: David Stalfa [view email][v1] Tue, 26 Jul 2022 18:10:24 UTC (248 KB)
[v2] Tue, 22 Nov 2022 00:04:40 UTC (951 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.