Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 27 Jul 2022 (v1), last revised 4 May 2023 (this version, v2)]
Title:Deep Learning for Classification of Thyroid Nodules on Ultrasound: Validation on an Independent Dataset
View PDFAbstract:Objectives: The purpose is to apply a previously validated deep learning algorithm to a new thyroid nodule ultrasound image dataset and compare its performances with radiologists. Methods: Prior study presented an algorithm which is able to detect thyroid nodules and then make malignancy classifications with two ultrasound images. A multi-task deep convolutional neural network was trained from 1278 nodules and originally tested with 99 separate nodules. The results were comparable with that of radiologists. The algorithm was further tested with 378 nodules imaged with ultrasound machines from different manufacturers and product types than the training cases. Four experienced radiologists were requested to evaluate the nodules for comparison with deep learning. Results: The Area Under Curve (AUC) of the deep learning algorithm and four radiologists were calculated with parametric, binormal estimation. For the deep learning algorithm, the AUC was 0.69 (95% CI: 0.64 - 0.75). The AUC of radiologists were 0.63 (95% CI: 0.59 - 0.67), 0.66 (95% CI:0.61 - 0.71), 0.65 (95% CI: 0.60 - 0.70), and 0.63 (95%CI: 0.58 - 0.67). Conclusion: In the new testing dataset, the deep learning algorithm achieved similar performances with all four radiologists. The relative performance difference between the algorithm and the radiologists is not significantly affected by the difference of ultrasound scanner.
Submission history
From: Jichen Yang [view email][v1] Wed, 27 Jul 2022 19:45:41 UTC (894 KB)
[v2] Thu, 4 May 2023 21:27:27 UTC (918 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.