Electrical Engineering and Systems Science > Systems and Control
[Submitted on 25 Jul 2022]
Title:Localization of Coordinated Cyber-Physical Attacks in Power Grids Using Moving Target Defense and Deep Learning
View PDFAbstract:As one of the most sophisticated attacks against power grids, coordinated cyber-physical attacks (CCPAs) damage the power grid's physical infrastructure and use a simultaneous cyber attack to mask its effect. This work proposes a novel approach to detect such attacks and identify the location of the line outages (due to the physical attack). The proposed approach consists of three parts. Firstly, moving target defense (MTD) is applied to expose the physical attack by actively perturbing transmission line reactance via distributed flexible AC transmission system (D-FACTS) devices. MTD invalidates the attackers' knowledge required to mask their physical attack. Secondly, convolution neural networks (CNNs) are applied to localize line outage position from the compromised measurements. Finally, model agnostic meta-learning (MAML) is used to accelerate the training speed of CNN following the topology reconfigurations (due to MTD) and reduce the data/retraining time requirements. Simulations are carried out using IEEE test systems. The experimental results demonstrate that the proposed approach can effectively localize line outages in stealthy CCPAs.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.