Computer Science > Social and Information Networks
[Submitted on 25 Jul 2022]
Title:Ego-graph Replay based Continual Learning for Misinformation Engagement Prediction
View PDFAbstract:Online social network platforms have a problem with misinformation. One popular way of addressing this problem is via the use of machine learning based automated misinformation detection systems to classify if a post is misinformation. Instead of post hoc detection, we propose to predict if a user will engage with misinformation in advance and design an effective graph neural network classifier based on ego-graphs for this task. However, social networks are highly dynamic, reflecting continual changes in user behaviour, as well as the content being posted. This is problematic for machine learning models which are typically trained on a static training dataset, and can thus become outdated when the social network changes. Inspired by the success of continual learning on such problems, we propose an ego-graphs replay strategy in continual learning (EgoCL) using graph neural networks to effectively address this issue. We have evaluated the performance of our method on user engagement with misinformation on two Twitter datasets across nineteen misinformation and conspiracy topics. Our experimental results show that our approach EgoCL has better performance in terms of predictive accuracy and computational resources than the state of the art.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.