Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Jul 2022 (v1), last revised 20 Feb 2023 (this version, v2)]
Title:Exploring Generalizable Distillation for Efficient Medical Image Segmentation
View PDFAbstract:Efficient medical image segmentation aims to provide accurate pixel-wise predictions for medical images with a lightweight implementation framework. However, lightweight frameworks generally fail to achieve superior performance and suffer from poor generalizable ability on cross-domain tasks. In this paper, we explore the generalizable knowledge distillation for the efficient segmentation of cross-domain medical images. Considering the domain gaps between different medical datasets, we propose the Model-Specific Alignment Networks (MSAN) to obtain the domain-invariant representations. Meanwhile, a customized Alignment Consistency Training (ACT) strategy is designed to promote the MSAN training. Considering the domain-invariant representative vectors in MSAN, we propose two generalizable knowledge distillation schemes for cross-domain distillation, Dual Contrastive Graph Distillation (DCGD) and Domain-Invariant Cross Distillation (DICD). Specifically, in DCGD, two types of implicit contrastive graphs are designed to represent the intra-coupling and inter-coupling semantic correlations from the perspective of data distribution. In DICD, the domain-invariant semantic vectors from the two models (i.e., teacher and student) are leveraged to cross-reconstruct features by the header exchange of MSAN, which achieves improvement in the generalization of both the encoder and decoder in the student model. Furthermore, a metric named Frechet Semantic Distance (FSD) is tailored to verify the effectiveness of the regularized domain-invariant features. Extensive experiments conducted on the Liver and Retinal Vessel Segmentation datasets demonstrate the superiority of our method, in terms of performance and generalization on lightweight frameworks.
Submission history
From: Xingqun Qi [view email][v1] Tue, 26 Jul 2022 15:55:36 UTC (3,471 KB)
[v2] Mon, 20 Feb 2023 05:11:27 UTC (3,388 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.