Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Jul 2022 (v1), last revised 21 Nov 2022 (this version, v2)]
Title:Contrastive Self-Supervised Learning Leads to Higher Adversarial Susceptibility
View PDFAbstract:Contrastive self-supervised learning (CSL) has managed to match or surpass the performance of supervised learning in image and video classification. However, it is still largely unknown if the nature of the representations induced by the two learning paradigms is similar. We investigate this under the lens of adversarial robustness. Our analysis of the problem reveals that CSL has intrinsically higher sensitivity to perturbations over supervised learning. We identify the uniform distribution of data representation over a unit hypersphere in the CSL representation space as the key contributor to this phenomenon. We establish that this is a result of the presence of false negative pairs in the training process, which increases model sensitivity to input perturbations. Our finding is supported by extensive experiments for image and video classification using adversarial perturbations and other input corruptions. We devise a strategy to detect and remove false negative pairs that is simple, yet effective in improving model robustness with CSL training. We close up to 68% of the robustness gap between CSL and its supervised counterpart. Finally, we contribute to adversarial learning by incorporating our method in CSL. We demonstrate an average gain of about 5% over two different state-of-the-art methods in this domain.
Submission history
From: Rohit Gupta [view email][v1] Fri, 22 Jul 2022 03:49:50 UTC (1,184 KB)
[v2] Mon, 21 Nov 2022 17:04:04 UTC (1,305 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.