Mathematics > Numerical Analysis
[Submitted on 20 Jul 2022]
Title:Schwarz methods by domain truncation
View PDFAbstract:Schwarz methods use a decomposition of the computational domain into subdomains and need to put boundary conditions on the subdomain boundaries. In domain truncation one restricts the unbounded domain to a bounded computational domain and also needs to put boundary conditions on the computational domain boundaries. It turns out to be fruitful to think of the domain decomposition in Schwarz methods as truncation of the domain onto subdomains. The first truly optimal Schwarz method that converges in a finite number of steps was proposed in 1994 and used precisely transparent boundary conditions as transmission conditions between subdomains. Approximating these transparent boundary conditions for fast convergence of Schwarz methods led to the development of optimized Schwarz methods -- a name that has become common for Schwarz methods based on domain truncation. Compared to classical Schwarz methods which use simple Dirichlet transmission conditions and have been successfully used in a wide range of applications, optimized Schwarz methods are much less well understood, mainly due to their more sophisticated transmission conditions. This present situation is the motivation for our survey: to give a comprehensive review and precise exploration of convergence behaviors of optimized Schwarz methods based on Fourier analysis taking into account the original boundary conditions, many subdomain decompositions and layered media. The transmission conditions we study include the lowest order absorbing conditions (Robin), and also more advanced perfectly matched layers (PML), both developed first for domain truncation.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.