Computer Science > Machine Learning
[Submitted on 18 Jul 2022 (v1), last revised 9 May 2023 (this version, v2)]
Title:Using Anomaly Detection to Detect Poisoning Attacks in Federated Learning Applications
View PDFAbstract:Adversarial attacks such as poisoning attacks have attracted the attention of many machine learning researchers. Traditionally, poisoning attacks attempt to inject adversarial training data in order to manipulate the trained model. In federated learning (FL), data poisoning attacks can be generalized to model poisoning attacks, which cannot be detected by simpler methods due to the lack of access to local training data by the detector. State-of-the-art poisoning attack detection methods for FL have various weaknesses, e.g., the number of attackers has to be known or not high enough, working with i.i.d. data only, and high computational complexity. To overcome above weaknesses, we propose a novel framework for detecting poisoning attacks in FL, which employs a reference model based on a public dataset and an auditor model to detect malicious updates. We implemented a detector based on the proposed framework and using a one-class support vector machine (OC-SVM), which reaches the lowest possible computational complexity O(K) where K is the number of clients. We evaluated our detector's performance against state-of-the-art (SOTA) poisoning attacks for two typical applications of FL: electrocardiograph (ECG) classification and human activity recognition (HAR). Our experimental results validated the performance of our detector over other SOTA detection methods.
Submission history
From: Ali Raza [view email][v1] Mon, 18 Jul 2022 10:10:45 UTC (1,445 KB)
[v2] Tue, 9 May 2023 13:30:46 UTC (2,195 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.