Computer Science > Data Structures and Algorithms
[Submitted on 14 Jul 2022]
Title:Unified almost linear kernels for generalized covering and packing problems on nowhere dense classes
View PDFAbstract:Let $\mathcal{F}$ be a family of graphs, and let $p,r$ be nonnegative integers. The \textsc{$(p,r,\mathcal{F})$-Covering} problem asks whether for a graph $G$ and an integer $k$, there exists a set $D$ of at most $k$ vertices in $G$ such that $G^p\setminus N_G^r[D]$ has no induced subgraph isomorphic to a graph in $\mathcal{F}$, where $G^p$ is the $p$-th power of $G$. The \textsc{$(p,r,\mathcal{F})$-Packing} problem asks whether for a graph $G$ and an integer $k$, $G^p$ has $k$ induced subgraphs $H_1,\ldots,H_k$ such that each $H_i$ is isomorphic to a graph in $\mathcal{F}$, and for distinct $i,j\in \{1, \ldots, k\}$, the distance between $V(H_i)$ and $V(H_j)$ in $G$ is larger than $r$.
We show that for every fixed nonnegative integers $p,r$ and every fixed nonempty finite family $\mathcal{F}$ of connected graphs, the \textsc{$(p,r,\mathcal{F})$-Covering} problem with $p\leq2r+1$ and the \textsc{$(p,r,\mathcal{F})$-Packing} problem with $p\leq2\lfloor r/2\rfloor+1$ admit almost linear kernels on every nowhere dense class of graphs, and admit linear kernels on every class of graphs with bounded expansion, parameterized by the solution size $k$. We obtain the same kernels for their annotated variants. As corollaries, we prove that \textsc{Distance-$r$ Vertex Cover}, \textsc{Distance-$r$ Matching}, \textsc{$\mathcal{F}$-Free Vertex Deletion}, and \textsc{Induced-$\mathcal{F}$-Packing} for any fixed finite family $\mathcal{F}$ of connected graphs admit almost linear kernels on every nowhere dense class of graphs and linear kernels on every class of graphs with bounded expansion. Our results extend the results for \textsc{Distance-$r$ Dominating Set} by Drange et al. (STACS 2016) and Eickmeyer et al. (ICALP 2017), and the result for \textsc{Distance-$r$ Independent Set} by Pilipczuk and Siebertz (EJC 2021).
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.