Electrical Engineering and Systems Science > Systems and Control
[Submitted on 12 Jul 2022 (v1), last revised 25 Mar 2024 (this version, v2)]
Title:Joint Ranging and Phase Offset Estimation for Multiple Drones using ADS-B Signatures
View PDF HTML (experimental)Abstract:A new method for joint ranging and Phase Offset (PO) estimation of multiple drones/aircrafts is proposed in this paper. The proposed method employs the superimposed uncoordinated Automatic Dependent Surveillance Broadcast (ADS-B) packets broadcasted by drones/aircrafts for joint range and PO estimation. It jointly estimates range and PO prior to ADS-B packet decoding; thus, it can improve air safety when packet decoding is infeasible due to packet collision. Moreover, it enables coherent detection of ADS-B packets, which can result in more reliable multiple target tracking in aviation systems using cooperative sensors for detect and avoid (DAA). By minimizing the Kullback Leibler Divergence (KLD) statistical distance measure, we show that the received complex baseband signal coming from K uncoordinated drones corrupted by Additive White Gaussian Noise (AWGN) at a single antenna receiver can be approximated by an independent and identically distributed Gaussian Mixture (GM) with 2 power K mixture components in the two dimensional (2D) plane. While direct joint Maximum Likelihood Estimation (MLE) of range and PO from the derived GM Probability Density Function (PDF) leads to an intractable maximization, our proposed method employs the Expectation Maximization (EM) algorithm to estimate the modes of the 2D Gaussian mixture followed by a reordering estimation technique through combinatorial optimization to estimate range and PO. An extension to a multiple antenna receiver is also investigated in this paper. While the proposed estimator can estimate the range of multiple drones with a single receive antenna, a larger number of drones can be supported with higher accuracy by the use of multiple antennas at the receiver. The effectiveness of the proposed estimator is supported by simulation results. We show that the proposed estimator can jointly estimate the range of three drones accurately.
Submission history
From: Mostafa Mohammadkarimi [view email][v1] Tue, 12 Jul 2022 08:06:17 UTC (799 KB)
[v2] Mon, 25 Mar 2024 06:33:43 UTC (2,331 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.