Computer Science > Hardware Architecture
[Submitted on 12 Jul 2022]
Title:Photonic Reconfigurable Accelerators for Efficient Inference of CNNs with Mixed-Sized Tensors
View PDFAbstract:Photonic Microring Resonator (MRR) based hardware accelerators have been shown to provide disruptive speedup and energy-efficiency improvements for processing deep Convolutional Neural Networks (CNNs). However, previous MRR-based CNN accelerators fail to provide efficient adaptability for CNNs with mixed-sized tensors. One example of such CNNs is depthwise separable CNNs. Performing inferences of CNNs with mixed-sized tensors on such inflexible accelerators often leads to low hardware utilization, which diminishes the achievable performance and energy efficiency from the accelerators. In this paper, we present a novel way of introducing reconfigurability in the MRR-based CNN accelerators, to enable dynamic maximization of the size compatibility between the accelerator hardware components and the CNN tensors that are processed using the hardware components. We classify the state-of-the-art MRR-based CNN accelerators from prior works into two categories, based on the layout and relative placements of the utilized hardware components in the accelerators. We then use our method to introduce reconfigurability in accelerators from these two classes, to consequently improve their parallelism, the flexibility of efficiently mapping tensors of different sizes, speed, and overall energy efficiency. We evaluate our reconfigurable accelerators against three prior works for the area proportionate outlook (equal hardware area for all accelerators). Our evaluation for the inference of four modern CNNs indicates that our designed reconfigurable CNN accelerators provide improvements of up to 1.8x in Frames-Per-Second (FPS) and up to 1.5x in FPS/W, compared to an MRR-based accelerator from prior work.
Submission history
From: Sairam Sri Vatsavai [view email][v1] Tue, 12 Jul 2022 03:18:00 UTC (3,851 KB)
Current browse context:
cs.AR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.