Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Jul 2022]
Title:Learning Disentangled Representations for Controllable Human Motion Prediction
View PDFAbstract:Generative model-based motion prediction techniques have recently realized predicting controlled human motions, such as predicting multiple upper human body motions with similar lower-body motions. However, to achieve this, the state-of-the-art methods require either subsequently learning mapping functions to seek similar motions or training the model repetitively to enable control over the desired portion of body. In this paper, we propose a novel framework to learn disentangled representations for controllable human motion prediction. Our network involves a conditional variational auto-encoder (CVAE) architecture to model full-body human motion, and an extra CVAE path to learn only the corresponding partial-body (e.g., lower-body) motion. Specifically, the inductive bias imposed by the extra CVAE path encourages two latent variables in two paths to respectively govern separate representations for each partial-body motion. With a single training, our model is able to provide two types of controls for the generated human motions: (i) strictly controlling one portion of human body and (ii) adaptively controlling the other portion, by sampling from a pair of latent spaces. Additionally, we extend and adapt a sampling strategy to our trained model to diversify the controllable predictions. Our framework also potentially allows new forms of control by flexibly customizing the input for the extra CVAE path. Extensive experimental results and ablation studies demonstrate that our approach is capable of predicting state-of-the-art controllable human motions both qualitatively and quantitatively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.