Mathematics > Numerical Analysis
[Submitted on 26 Jun 2022]
Title:A $C^{0}$ finite element approximation of planar oblique derivative problems in non-divergence form
View PDFAbstract:This paper proposes a $C^{0}$ (non-Lagrange) primal finite element approximation of the linear elliptic equations in non-divergence form with oblique boundary conditions in planar, curved domains. As an extension of [Calcolo, 58 (2022), No. 9], the Miranda-Talenti estimate for oblique boundary conditions at a discrete level is established by enhancing the regularity on the vertices. Consequently, the coercivity constant for the proposed scheme is exactly the same as that from PDE theory. The quasi-optimal order error estimates are established by carefully studying the approximation property of the finite element spaces. Numerical experiments are provided to verify the convergence theory and to demonstrate the accuracy and efficiency of the proposed methods.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.