Mathematics > Numerical Analysis
[Submitted on 21 Jun 2022 (v1), last revised 5 Oct 2022 (this version, v2)]
Title:Artificial Neural Network evaluation of Poincaré constant for Voronoi polygons
View PDFAbstract:We propose a method, based on Artificial Neural Networks, that learns the dependence of the constant in the Poincaré inequality on polygonal elements of Voronoi meshes, on some geometrical metrics of the element. The cost of this kind of algorithms mainly resides in the data preprocessing and learning phases, that can be performed offline once and for all, constructing an efficient method for computing the constant, which is needed in the design of a posteriori error estimates in numerical mesh-based schemes for the solution of Partial Differential Equations.
Submission history
From: Micol Pennacchio [view email][v1] Tue, 21 Jun 2022 12:17:04 UTC (1,277 KB)
[v2] Wed, 5 Oct 2022 14:47:15 UTC (1,277 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.