Computer Science > Machine Learning
[Submitted on 21 Jun 2022 (v1), last revised 27 Jul 2023 (this version, v2)]
Title:Algorithmic Gaussianization through Sketching: Converting Data into Sub-gaussian Random Designs
View PDFAbstract:Algorithmic Gaussianization is a phenomenon that can arise when using randomized sketching or sampling methods to produce smaller representations of large datasets: For certain tasks, these sketched representations have been observed to exhibit many robust performance characteristics that are known to occur when a data sample comes from a sub-gaussian random design, which is a powerful statistical model of data distributions. However, this phenomenon has only been studied for specific tasks and metrics, or by relying on computationally expensive methods. We address this by providing an algorithmic framework for gaussianizing data distributions via averaging, proving that it is possible to efficiently construct data sketches that are nearly indistinguishable (in terms of total variation distance) from sub-gaussian random designs. In particular, relying on a recently introduced sketching technique called Leverage Score Sparsified (LESS) embeddings, we show that one can construct an $n\times d$ sketch of an $N\times d$ matrix $A$, where $n\ll N$, that is nearly indistinguishable from a sub-gaussian design, in time $O(\text{nnz}(A)\log N + nd^2)$, where $\text{nnz}(A)$ is the number of non-zero entries in $A$. As a consequence, strong statistical guarantees and precise asymptotics available for the estimators produced from sub-gaussian designs (e.g., for least squares and Lasso regression, covariance estimation, low-rank approximation, etc.) can be straightforwardly adapted to our sketching framework. We illustrate this with a new approximation guarantee for sketched least squares, among other examples.
Submission history
From: Michał Dereziński [view email][v1] Tue, 21 Jun 2022 12:16:45 UTC (327 KB)
[v2] Thu, 27 Jul 2023 17:48:41 UTC (422 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.