Mathematics > Optimization and Control
[Submitted on 19 Jun 2022 (v1), last revised 18 Apr 2023 (this version, v3)]
Title:Toward Robust Manufacturing Scheduling: Stochastic Job-Shop Scheduling
View PDFAbstract:Manufacturing plays a significant role in economic development, production, exports, and job creation, which ultimately contribute to improving the quality of life. The presence of manufacturing defects is, however, inevitable leading to products being discarded, i.e. scrapped. In some cases, defective products can be repaired through rework. Scrap and rework cause a longer completion time, which can contribute to orders being shipped late. Moreover, the presence of uncertainties and combinatorial complexity significantly increases the difficulty of complex manufacturing scheduling. This paper tackles this challenge, exemplified by a case study on stochastic job-shop scheduling in low-volume, high-variety manufacturing contexts. To ensure on-time delivery, high-quality solutions are required, and near-optimal solutions must be obtained within strict time constraints to ensure smooth operations on the job-shop floor. To efficiently solve the stochastic job-shop scheduling (JSS) problem, a recently-developed Surrogate "Level-Based" Lagrangian Relaxation is used to reduce computational effort while efficiently exploiting the geometric convergence potential inherent to Polyak's stepsizing formula thereby leading to fast convergence. Numerical testing demonstrates that the new method is two orders of magnitude faster as compared to commercial solvers.
Submission history
From: Mikhail Bragin [view email][v1] Sun, 19 Jun 2022 04:54:13 UTC (4,652 KB)
[v2] Mon, 23 Jan 2023 04:51:28 UTC (727 KB)
[v3] Tue, 18 Apr 2023 22:36:09 UTC (741 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.