Computer Science > Machine Learning
[Submitted on 15 Jun 2022 (v1), last revised 19 Jun 2022 (this version, v2)]
Title:Resource-Constrained Edge AI with Early Exit Prediction
View PDFAbstract:By leveraging the data sample diversity, the early-exit network recently emerges as a prominent neural network architecture to accelerate the deep learning inference process. However, intermediate classifiers of the early exits introduce additional computation overhead, which is unfavorable for resource-constrained edge artificial intelligence (AI). In this paper, we propose an early exit prediction mechanism to reduce the on-device computation overhead in a device-edge co-inference system supported by early-exit networks. Specifically, we design a low-complexity module, namely the Exit Predictor, to guide some distinctly "hard" samples to bypass the computation of the early exits. Besides, considering the varying communication bandwidth, we extend the early exit prediction mechanism for latency-aware edge inference, which adapts the prediction thresholds of the Exit Predictor and the confidence thresholds of the early-exit network via a few simple regression models. Extensive experiment results demonstrate the effectiveness of the Exit Predictor in achieving a better tradeoff between accuracy and on-device computation overhead for early-exit networks. Besides, compared with the baseline methods, the proposed method for latency-aware edge inference attains higher inference accuracy under different bandwidth conditions.
Submission history
From: Rongkang Dong [view email][v1] Wed, 15 Jun 2022 03:14:21 UTC (3,409 KB)
[v2] Sun, 19 Jun 2022 11:51:02 UTC (3,409 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.