Computer Science > Computer Science and Game Theory
[Submitted on 14 Jun 2022 (v1), last revised 30 Jun 2023 (this version, v2)]
Title:Plurality Veto: A Simple Voting Rule Achieving Optimal Metric Distortion
View PDFAbstract:The metric distortion framework posits that n voters and m candidates are jointly embedded in a metric space such that voters rank candidates that are closer to them higher. A voting rule's purpose is to pick a candidate with minimum total distance to the voters, given only the rankings, but not the actual distances. As a result, in the worst case, each deterministic rule picks a candidate whose total distance is at least three times larger than that of an optimal one, i.e., has distortion at least 3. A recent breakthrough result showed that achieving this bound of 3 is possible; however, the proof is non-constructive, and the voting rule itself is a complicated exhaustive search.
Our main result is an extremely simple voting rule, called Plurality Veto, which achieves the same optimal distortion of 3. Each candidate starts with a score equal to his number of first-place votes. These scores are then gradually decreased via an n-round veto process in which a candidate drops out when his score reaches zero. One after the other, voters decrement the score of their bottom choice among the standing candidates, and the last standing candidate wins. We give a one-paragraph proof that this voting rule achieves distortion 3. This rule is also immensely practical, and it only makes two queries to each voter, so it has low communication overhead.
We also generalize Plurality Veto into a class of randomized voting rules in the following way: Plurality veto is run only for k < n rounds; then, a candidate is chosen with probability proportional to his residual score. This general rule interpolates between Random Dictatorship (for k=0) and Plurality Veto (for k=n-1), and k controls the variance of the output. We show that for all k, this rule has distortion at most 3.
Submission history
From: Fatih Erdem Kizilkaya [view email][v1] Tue, 14 Jun 2022 18:32:32 UTC (154 KB)
[v2] Fri, 30 Jun 2023 00:54:21 UTC (155 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.