Computer Science > Information Theory
[Submitted on 15 Jun 2022 (v1), last revised 14 Nov 2022 (this version, v2)]
Title:Mitigating Intra-Cell Pilot Contamination in Massive MIMO: A Rate Splitting Approach
View PDFAbstract:Massive multiple-input multiple-output (MaMIMO) has become an integral part of the fifth-generation (5G) standard, and is envisioned to be further developed in beyond 5G (B5G) networks. With a massive number of antennas at the base station (BS), MaMIMO is best equipped to cater prominent use cases of B5G networks such as enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC) and massive machine-type communications (mMTC) or combinations thereof. However, one of the critical challenges to this pursuit is the sporadic access behaviour of a massive number of devices in practical networks that inevitably leads to the conspicuous pilot contamination problem. Conventional linearly precoded physical layer strategies employed for downlink transmission in time division duplex (TDD) MaMIMO would incur a noticeable spectral efficiency (SE) loss in the presence of this pilot contamination. In this paper, we aim to integrate a robust multiple access and interference management strategy named rate-splitting multiple access (RSMA) with TDD MaMIMO for downlink transmission and investigate its SE performance. We propose a novel downlink transmission framework of RSMA in TDD MaMIMO, devise a precoder design strategy and power allocation schemes to maximize different network utility functions. Numerical results reveal that RSMA is significantly more robust to pilot contamination and always achieves a SE performance that is equal to or better than the conventional linearly precoded MaMIMO transmission strategy.
Submission history
From: Anup Mishra [view email][v1] Wed, 15 Jun 2022 12:50:40 UTC (448 KB)
[v2] Mon, 14 Nov 2022 10:12:11 UTC (1,756 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.