Computer Science > Logic in Computer Science
[Submitted on 13 Jun 2022]
Title:Characterising Modal Formulas with Examples
View PDFAbstract:We initiate the study of finite characterizations and exact learnability of modal languages. A finite characterization of a modal formula w.r.t. a set of formulas is a finite set of finite models (labelled either positive or negative) which distinguishes this formula from every other formula from that set. A modal language L admits finite characterisations if every L-formula has a finite characterization w.r.t. L. This definition can be applied not only to the basic modal logic K, but to arbitrary normal modal logics. We show that a normal modal logic admits finite characterisations (for the full modal language) iff it is locally tabular. This shows that finite characterizations with respect to the full modal language are rare, and hence motivates the study of finite characterizations for fragments of the full modal language. Our main result is that the positive modal language without the truth-constants $\top$ and $\bot$ admits finite characterisations. Moreover, we show that this result is essentially optimal: finite characterizations no longer exist when the language is extended with the truth constant $\bot$ or with all but very limited forms of negation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.