Computer Science > Machine Learning
[Submitted on 9 Jun 2022]
Title:Adversarial Noises Are Linearly Separable for (Nearly) Random Neural Networks
View PDFAbstract:Adversarial examples, which are usually generated for specific inputs with a specific model, are ubiquitous for neural networks. In this paper we unveil a surprising property of adversarial noises when they are put together, i.e., adversarial noises crafted by one-step gradient methods are linearly separable if equipped with the corresponding labels. We theoretically prove this property for a two-layer network with randomly initialized entries and the neural tangent kernel setup where the parameters are not far from initialization. The proof idea is to show the label information can be efficiently backpropagated to the input while keeping the linear separability. Our theory and experimental evidence further show that the linear classifier trained with the adversarial noises of the training data can well classify the adversarial noises of the test data, indicating that adversarial noises actually inject a distributional perturbation to the original data distribution. Furthermore, we empirically demonstrate that the adversarial noises may become less linearly separable when the above conditions are compromised while they are still much easier to classify than original features.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.