Mathematics > Numerical Analysis
[Submitted on 8 Jun 2022 (v1), last revised 20 Jan 2023 (this version, v2)]
Title:Space-time unfitted finite element methods for time-dependent problems on moving domains
View PDFAbstract:We propose a space-time scheme that combines an unfitted finite element method in space with a discontinuous Galerkin time discretisation for the accurate numerical approximation of parabolic problems with moving domains or interfaces. We make use of an aggregated finite element space to attain robustness with respect to the cut locations. The aggregation is performed slab-wise to have a tensor product structure of the space-time discrete space, which is required in the numerical analysis. We analyse the proposed algorithm, providing stability, condition number bounds and anisotropic \emph{a priori} error estimates. A set of numerical experiments confirm the theoretical results for a parabolic problem on a moving domain. The method is applied for a mass transfer problem with changing topology.
Submission history
From: Santiago Badia Sb [view email][v1] Wed, 8 Jun 2022 00:44:24 UTC (534 KB)
[v2] Fri, 20 Jan 2023 10:27:01 UTC (613 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.