Computer Science > Artificial Intelligence
[Submitted on 2 Jun 2022 (v1), last revised 16 Nov 2022 (this version, v2)]
Title:Language and Culture Internalisation for Human-Like Autotelic AI
View PDFAbstract:Building autonomous agents able to grow open-ended repertoires of skills across their lives is a fundamental goal of artificial intelligence (AI). A promising developmental approach recommends the design of intrinsically motivated agents that learn new skills by generating and pursuing their own goals - autotelic agents. But despite recent progress, existing algorithms still show serious limitations in terms of goal diversity, exploration, generalisation or skill composition. This perspective calls for the immersion of autotelic agents into rich socio-cultural worlds, an immensely important attribute of our environment that shapes human cognition but is mostly omitted in modern AI. Inspired by the seminal work of Vygotsky, we propose Vygotskian autotelic agents - agents able to internalise their interactions with others and turn them into cognitive tools. We focus on language and show how its structure and informational content may support the development of new cognitive functions in artificial agents as it does in humans. We justify the approach by uncovering several examples of new artificial cognitive functions emerging from interactions between language and embodiment in recent works at the intersection of deep reinforcement learning and natural language processing. Looking forward, we highlight future opportunities and challenges for Vygotskian Autotelic AI research, including the use of language models as cultural models supporting artificial cognitive development.
Submission history
From: Tristan Karch [view email][v1] Thu, 2 Jun 2022 16:35:41 UTC (8,045 KB)
[v2] Wed, 16 Nov 2022 14:25:23 UTC (4,876 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.