Computer Science > Computation and Language
[Submitted on 2 Jun 2022]
Title:BayesFormer: Transformer with Uncertainty Estimation
View PDFAbstract:Transformer has become ubiquitous due to its dominant performance in various NLP and image processing tasks. However, it lacks understanding of how to generate mathematically grounded uncertainty estimates for transformer architectures. Models equipped with such uncertainty estimates can typically improve predictive performance, make networks robust, avoid over-fitting and used as acquisition function in active learning. In this paper, we introduce BayesFormer, a Transformer model with dropouts designed by Bayesian theory. We proposed a new theoretical framework to extend the approximate variational inference-based dropout to Transformer-based architectures. Through extensive experiments, we validate the proposed architecture in four paradigms and show improvements across the board: language modeling and classification, long-sequence understanding, machine translation and acquisition function for active learning.
Submission history
From: Karthik Abinav Sankararaman [view email][v1] Thu, 2 Jun 2022 01:54:58 UTC (3,573 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.