Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Jun 2022 (v1), last revised 20 Jun 2022 (this version, v2)]
Title:Efficient Self-supervised Vision Pretraining with Local Masked Reconstruction
View PDFAbstract:Self-supervised learning for computer vision has achieved tremendous progress and improved many downstream vision tasks such as image classification, semantic segmentation, and object detection. Among these, generative self-supervised vision learning approaches such as MAE and BEiT show promising performance. However, their global masked reconstruction mechanism is computationally demanding. To address this issue, we propose local masked reconstruction (LoMaR), a simple yet effective approach that performs masked reconstruction within a small window of 7$\times$7 patches on a simple Transformer encoder, improving the trade-off between efficiency and accuracy compared to global masked reconstruction over the entire image. Extensive experiments show that LoMaR reaches 84.1% top-1 accuracy on ImageNet-1K classification, outperforming MAE by 0.5%. After finetuning the pretrained LoMaR on 384$\times$384 images, it can reach 85.4% top-1 accuracy, surpassing MAE by 0.6%. On MS COCO, LoMaR outperforms MAE by 0.5 $\text{AP}^\text{box}$ on object detection and 0.5 $\text{AP}^\text{mask}$ on instance segmentation. LoMaR is especially more computation-efficient on pretraining high-resolution images, e.g., it is 3.1$\times$ faster than MAE with 0.2% higher classification accuracy on pretraining 448$\times$448 images. This local masked reconstruction learning mechanism can be easily integrated into any other generative self-supervised learning approach. Our code is publicly available in this https URL.
Submission history
From: Jun Chen [view email][v1] Wed, 1 Jun 2022 22:46:34 UTC (17,392 KB)
[v2] Mon, 20 Jun 2022 13:28:04 UTC (17,392 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.