Physics > Computational Physics
[Submitted on 1 Jun 2022]
Title:Discrete-velocity-direction models of BGK-type with minimum entropy: I. Basic idea
View PDFAbstract:In this series of works, we develop a discrete-velocity-direction model (DVDM) with collisions of BGK-type for simulating rarefied flows. Unlike the conventional kinetic models (both BGK and discrete-velocity models), the new model restricts the transport to finite fixed directions but leaves the transport speed to be a 1-D continuous variable. Analogous to the BGK equation, the discrete equilibriums of the model are determined by minimizing a discrete entropy. In this first paper, we introduce the DVDM and investigate its basic properties, including the existence of the discrete equilibriums and the $H$-theorem. We also show that the discrete equilibriums can be efficiently obtained by solving a convex optimization problem. The proposed model provides a new way in choosing discrete velocities for the computational practice of the conventional discrete-velocity methodology. It also facilitates a convenient multidimensional extension of the extended quadrature method of moments. We validate the model with numerical experiments for two benchmark problems at moderate computational costs.
Current browse context:
physics.comp-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.