Economics > Econometrics
[Submitted on 31 May 2022 (v1), last revised 1 Jun 2022 (this version, v2)]
Title:Predicting Day-Ahead Stock Returns using Search Engine Query Volumes: An Application of Gradient Boosted Decision Trees to the S&P 100
View PDFAbstract:The internet has changed the way we live, work and take decisions. As it is the major modern resource for research, detailed data on internet usage exhibits vast amounts of behavioral information. This paper aims to answer the question whether this information can be facilitated to predict future returns of stocks on financial capital markets. In an empirical analysis it implements gradient boosted decision trees to learn relationships between abnormal returns of stocks within the S&P 100 index and lagged predictors derived from historical financial data, as well as search term query volumes on the internet search engine Google. Models predict the occurrence of day-ahead stock returns in excess of the index median. On a time frame from 2005 to 2017, all disparate datasets exhibit valuable information. Evaluated models have average areas under the receiver operating characteristic between 54.2% and 56.7%, clearly indicating a classification better than random guessing. Implementing a simple statistical arbitrage strategy, models are used to create daily trading portfolios of ten stocks and result in annual performances of more than 57% before transaction costs. With ensembles of different data sets topping up the performance ranking, the results further question the weak form and semi-strong form efficiency of modern financial capital markets. Even though transaction costs are not included, the approach adds to the existing literature. It gives guidance on how to use and transform data on internet usage behavior for financial and economic modeling and forecasting.
Submission history
From: Christopher Bockel-Rickermann [view email][v1] Tue, 31 May 2022 14:58:46 UTC (3,018 KB)
[v2] Wed, 1 Jun 2022 09:16:50 UTC (3,018 KB)
Current browse context:
econ.EM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.