Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 May 2022]
Title:Bag of Tricks for Domain Adaptive Multi-Object Tracking
View PDFAbstract:In this paper, SIA_Track is presented which is developed by a research team from SI Analytics. The proposed method was built from pre-existing detector and tracker under the tracking-by-detection paradigm. The tracker we used is an online tracker that merely links newly received detections with existing tracks. The core part of our method is training procedure of the object detector where synthetic and unlabeled real data were only used for training. To maximize the performance on real data, we first propose to use pseudo-labeling that generates imperfect labels for real data using a model trained with synthetic dataset. After that model soups scheme was applied to aggregate weights produced during iterative pseudo-labeling. Besides, cross-domain mixed sampling also helped to increase detection performance on real data. Our method, SIA_Track, takes the first place on MOTSynth2MOT17 track at BMTT 2022 challenge. The code is available on this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.