Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 May 2022 (v1), last revised 5 Nov 2024 (this version, v4)]
Title:RIAV-MVS: Recurrent-Indexing an Asymmetric Volume for Multi-View Stereo
View PDF HTML (experimental)Abstract:This paper presents a learning-based method for multi-view depth estimation from posed images. Our core idea is a "learning-to-optimize" paradigm that iteratively indexes a plane-sweeping cost volume and regresses the depth map via a convolutional Gated Recurrent Unit (GRU). Since the cost volume plays a paramount role in encoding the multi-view geometry, we aim to improve its construction both at pixel- and frame- levels. At the pixel level, we propose to break the symmetry of the Siamese network (which is typically used in MVS to extract image features) by introducing a transformer block to the reference image (but not to the source images). Such an asymmetric volume allows the network to extract global features from the reference image to predict its depth map. Given potential inaccuracies in the poses between reference and source images, we propose to incorporate a residual pose network to correct the relative poses. This essentially rectifies the cost volume at the frame level. We conduct extensive experiments on real-world MVS datasets and show that our method achieves state-of-the-art performance in terms of both within-dataset evaluation and cross-dataset generalization. Code available: this https URL.
Submission history
From: Changjiang Cai [view email][v1] Sat, 28 May 2022 03:32:56 UTC (12,556 KB)
[v2] Mon, 28 Nov 2022 22:40:19 UTC (22,981 KB)
[v3] Wed, 22 Mar 2023 00:55:32 UTC (23,813 KB)
[v4] Tue, 5 Nov 2024 00:38:29 UTC (23,799 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.