Computer Science > Cryptography and Security
[Submitted on 27 May 2022 (v1), last revised 25 Jul 2023 (this version, v3)]
Title:BASALISC: Programmable Hardware Accelerator for BGV Fully Homomorphic Encryption
View PDFAbstract:Fully Homomorphic Encryption (FHE) allows for secure computation on encrypted data. Unfortunately, huge memory size, computational cost and bandwidth requirements limit its practicality. We present BASALISC, an architecture family of hardware accelerators that aims to substantially accelerate FHE computations in the cloud. BASALISC is the first to implement the BGV scheme with fully-packed bootstrapping -- the noise removal capability necessary for arbitrary-depth computation. It supports a customized version of bootstrapping that can be instantiated with hardware multipliers optimized for area and power.
BASALISC is a three-abstraction-layer RISC architecture, designed for a 1 GHz ASIC implementation and underway toward 150mm2 die tape-out in a 12nm GF process. BASALISC's four-layer memory hierarchy includes a two-dimensional conflict-free inner memory layer that enables 32 Tb/s radix-256 NTT computations without pipeline stalls. Its conflict-resolution permutation hardware is generalized and re-used to compute BGV automorphisms without throughput penalty. BASALISC also has a custom multiply-accumulate unit to accelerate BGV key switching.
The BASALISC toolchain comprises a custom compiler and a joint performance and correctness simulator. To evaluate BASALISC, we study its physical realizability, emulate and formally verify its core functional units, and we study its performance on a set of benchmarks. Simulation results show a speedup of more than 5,000 times over HElib -- a popular software FHE library.
Submission history
From: Robin Geelen [view email][v1] Fri, 27 May 2022 14:37:38 UTC (1,881 KB)
[v2] Wed, 24 Aug 2022 08:23:47 UTC (4,366 KB)
[v3] Tue, 25 Jul 2023 08:59:51 UTC (2,619 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.