Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 May 2022]
Title:Adaptive color transfer from images to terrain visualizations
View PDFAbstract:Terrain mapping is not only dedicated to communicating how high or how steep a landscape is but can also help to narrate how we feel about a place. However, crafting effective and expressive hypsometric tints is challenging for both nonexperts and experts. In this paper, we present a two-step image-to-terrain color transfer method that can transfer color from arbitrary images to diverse terrain models. First, we present a new image color organization method that organizes discrete, irregular image colors into a continuous, regular color grid that facilitates a series of color operations, such as local and global searching, categorical color selection and sequential color interpolation. Second, we quantify a series of subjective concerns about elevation color crafting, such as "the lower, the higher" principle, color conventions, and aerial perspectives. We also define color similarity between image and terrain visualization with aesthetic quality. We then mathematically formulate image-to-terrain color transfer as a dual-objective optimization problem and offer a heuristic searching method to solve the problem. Finally, we compare elevation tints from our method with a standard color scheme on four test terrains. The evaluations show that the hypsometric tints from the proposed method can work as effectively as the standard scheme and that our tints are more visually favorable. We also showcase that our method can transfer emotion from image to terrain visualization.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.