Computer Science > Computer Science and Game Theory
[Submitted on 24 May 2022]
Title:Fairness in Selection Problems with Strategic Candidates
View PDFAbstract:To better understand discriminations and the effect of affirmative actions in selection problems (e.g., college admission or hiring), a recent line of research proposed a model based on differential variance. This model assumes that the decision-maker has a noisy estimate of each candidate's quality and puts forward the difference in the noise variances between different demographic groups as a key factor to explain discrimination. The literature on differential variance, however, does not consider the strategic behavior of candidates who can react to the selection procedure to improve their outcome, which is well-known to happen in many domains.
In this paper, we study how the strategic aspect affects fairness in selection problems. We propose to model selection problems with strategic candidates as a contest game: A population of rational candidates compete by choosing an effort level to increase their quality. They incur a cost-of-effort but get a (random) quality whose expectation equals the chosen effort. A Bayesian decision-maker observes a noisy estimate of the quality of each candidate (with differential variance) and selects the fraction $\alpha$ of best candidates based on their posterior expected quality; each selected candidate receives a reward $S$. We characterize the (unique) equilibrium of this game in the different parameters' regimes, both when the decision-maker is unconstrained and when they are constrained to respect the fairness notion of demographic parity. Our results reveal important impacts of the strategic behavior on the discrimination observed at equilibrium and allow us to understand the effect of imposing demographic parity in this context. In particular, we find that, in many cases, the results contrast with the non-strategic setting.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.