Physics > Computational Physics
[Submitted on 23 May 2022 (v1), last revised 2 Nov 2022 (this version, v2)]
Title:Scaling and performance portability of the particle-in-cell scheme for plasma physics applications through mini-apps targeting exascale architectures
View PDFAbstract:We perform a scaling and performance portability study of the particle-in-cell scheme for plasma physics applications through a set of mini-apps we name "Alpine", which can make use of exascale computing capabilities. The mini-apps are based on Independent Parallel Particle Layer, a framework that is designed around performance portable and dimension independent particles and fields.
We benchmark the simulations with varying parameters such as grid resolutions ($512^3$ to $2048^3$) and number of simulation particles ($10^9$ to $10^{11}$) with the following mini-apps: weak and strong Landau damping, bump-on-tail and two-stream instabilities, and the dynamics of an electron bunch in a charge-neutral Penning trap. We show strong and weak scaling and analyze the performance of different components on several pre-exascale architectures such as Piz-Daint, Cori, Summit and Perlmutter. While the scaling and portability study helps identify the performance critical components of the particle-in-cell scheme in the current state-of-the-art computing architectures, the mini-apps by themselves can be used to develop new algorithms and optimize their high performance implementations targeting exascale architectures.
Submission history
From: Sriramkrishnan Muralikrishnan [view email][v1] Mon, 23 May 2022 05:35:13 UTC (1,800 KB)
[v2] Wed, 2 Nov 2022 06:25:44 UTC (1,801 KB)
Current browse context:
physics.comp-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.