Mathematics > Optimization and Control
[Submitted on 23 May 2022 (v1), last revised 22 Sep 2022 (this version, v3)]
Title:Theoretical Analysis of Primal-Dual Algorithm for Non-Convex Stochastic Decentralized Optimization
View PDFAbstract:In recent years, decentralized learning has emerged as a powerful tool not only for large-scale machine learning, but also for preserving privacy. One of the key challenges in decentralized learning is that the data distribution held by each node is statistically heterogeneous. To address this challenge, the primal-dual algorithm called the Edge-Consensus Learning (ECL) was proposed and was experimentally shown to be robust to the heterogeneity of data distributions. However, the convergence rate of the ECL is provided only when the objective function is convex, and has not been shown in a standard machine learning setting where the objective function is non-convex. Furthermore, the intuitive reason why the ECL is robust to the heterogeneity of data distributions has not been investigated. In this work, we first investigate the relationship between the ECL and Gossip algorithm and show that the update formulas of the ECL can be regarded as correcting the local stochastic gradient in the Gossip algorithm. Then, we propose the Generalized ECL (G-ECL), which contains the ECL as a special case, and provide the convergence rates of the G-ECL in both (strongly) convex and non-convex settings, which do not depend on the heterogeneity of data distributions. Through synthetic experiments, we demonstrate that the numerical results of both the G-ECL and ECL coincide with the convergence rate of the G-ECL.
Submission history
From: Yuki Takezawa [view email][v1] Mon, 23 May 2022 09:50:57 UTC (2,110 KB)
[v2] Thu, 4 Aug 2022 05:20:49 UTC (2,111 KB)
[v3] Thu, 22 Sep 2022 04:42:21 UTC (2,110 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.