Astrophysics > Earth and Planetary Astrophysics
[Submitted on 18 May 2022]
Title:The Nature of Low-Albedo Small Bodies from 3-$μ$m Spectroscopy: One Group that Formed Within the Ammonia Snow Line and One that Formed Beyond It
View PDFAbstract:We present evidence, via a large survey of 191 new spectra along with previously-published spectra, of a divide in the 3-$\mu$m spectral properties of the low-albedo asteroid population. One group ("Sharp-types" or ST, with band centers $<$ 3 $\mu$m) has a spectral shape consistent with carbonaceous chondrite meteorites, while the other group ("not-Sharp-types" or NST, with bands centered $>$ 3 $\mu$m) is not represented in the meteorite literature but is as abundant as the STs among large objects. Both groups are present in most low-albedo asteroid taxonomic classes, and except in limited cases taxonomic classifications based on 0.5-2.5-$\mu$m data alone cannot predict whether an asteroid is ST or NST.
Statistical tests show the STs and NSTs differ in average band depth, semi-major axis, and perihelion at confidence levels $\ge$98\%, while not showing significant differences in albedo. We also show that many NSTs have a 3-$\mu$m absorption band shape like Comet 67P, and likely represent an important small-body composition throughout the solar system. A simple explanation for the origin of these groups is formation on opposite sides of the ammonia snow line, with the NST group accreting H2O and NH3 and the ST group only accreting H2O, with subsequent thermal and chemical evolution resulting in the minerals seen today. Such an explanation is consistent with recent dynamical modeling of planetesimal formation and delivery, and suggests that much more outer solar system material was delivered to the main asteroid belt than would be thought based on the number of D-class asteroids found today.
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.