Computer Science > Machine Learning
[Submitted on 15 May 2022]
Title:Learning Shared Kernel Models: the Shared Kernel EM algorithm
View PDFAbstract:Expectation maximisation (EM) is an unsupervised learning method for estimating the parameters of a finite mixture distribution. It works by introducing "hidden" or "latent" variables via Baum's auxiliary function $Q$ that allow the joint data likelihood to be expressed as a product of simple factors. The relevance of EM has increased since the introduction of the variational lower bound (VLB): the VLB differs from Baum's auxiliary function only by the entropy of the PDF of the latent variables $Z$. We first present a rederivation of the standard EM algorithm using data association ideas from the field of multiple target tracking, using $K$-valued scalar data association hypotheses rather than the usual binary indicator vectors. The same method is then applied to a little known but much more general type of supervised EM algorithm for shared kernel models, related to probabilistic radial basis function networks. We address a number of shortcomings in the derivations that have been published previously in this area. In particular, we give theoretically rigorous derivations of (i) the complete data likelihood; (ii) Baum's auxiliary function (the E-step) and (iii) the maximisation (M-step) in the case of Gaussian shared kernel models. The subsequent algorithm, called shared kernel EM (SKEM), is then applied to a digit recognition problem using a novel 7-segment digit representation. Variants of the algorithm that use different numbers of features and different EM algorithm dimensions are compared in terms of mean accuracy and mean IoU. A simplified classifier is proposed that decomposes the joint data PDF as a product of lower order PDFs over non-overlapping subsets of variables. The effect of different numbers of assumed mixture components $K$ is also investigated. High-level source code for the data generation and SKEM algorithm is provided.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.