Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 May 2022]
Title:Detection Masking for Improved OCR on Noisy Documents
View PDFAbstract:Optical Character Recognition (OCR), the task of extracting textual information from scanned documents is a vital and broadly used technology for digitizing and indexing physical documents. Existing technologies perform well for clean documents, but when the document is visually degraded, or when there are non-textual elements, OCR quality can be greatly impacted, specifically due to erroneous detections. In this paper we present an improved detection network with a masking system to improve the quality of OCR performed on documents. By filtering non-textual elements from the image we can utilize document-level OCR to incorporate contextual information to improve OCR results. We perform a unified evaluation on a publicly available dataset demonstrating the usefulness and broad applicability of our method. Additionally, we present and make publicly available our synthetic dataset with a unique hard-negative component specifically tuned to improve detection results, and evaluate the benefits that can be gained from its usage
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.