Computer Science > Data Structures and Algorithms
[Submitted on 17 May 2022]
Title:The Energy Complexity of Las Vegas Leader Election
View PDFAbstract:We consider the time and energy complexities of randomized leader election in a multiple-access channel, where the number of devices $n\geq 2$ is unknown. It is well-known that for polynomial-time randomized leader election algorithms with success probability $1-1/poly(n)$, the optimal energy complexity is $\Theta(\log\log^*n)$ if receivers can detect collisions, and $\Theta(\log^*n)$ otherwise.
Without collision detection, all existing randomized leader election algorithms using $o(\log\log n)$ energy are Monte Carlo in that they may fail with some small probability, and they may consume unbounded energy and never halt when they fail. Though the optimal energy complexity of leader election appears to be settled, it is still an open question to attain the optimal $O(\log^*n)$ energy complexity by an efficient Las Vegas algorithm that never fails. In this paper we address this fundamental question.
$\textbf{Separation between Monte Carlo and Las Vegas:}$ Without collision detection, we prove that any Las Vegas leader election algorithm with finite expected time complexity must use $\Omega(\log\log n)$ energy, establishing a large separation between Monte Carlo and Las Vegas algorithms.
$\textbf{Exponential improvement with sender collision detection:}$ In the setting where senders can detect collisions, we design a new leader election algorithm that finishes in $O(\log^{1+\epsilon}n)$ time and uses $O(\epsilon^{-1}\log\log\log n)$ energy in expectation, showing that sender collision detection helps improve the energy complexity exponentially.
$\textbf{Optimal deterministic leader election algorithm:}$ As a side result, via derandomization, we show a new deterministic algorithm that takes $O(n\log(N/n))$ time and $O(\log(N/n))$ energy to elect a leader from $n$ devices, where each device has a unique identifier in $[N]$. This algorithm is time-optimal and energy-optimal.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.