Computer Science > Machine Learning
[Submitted on 11 May 2022 (v1), last revised 6 Apr 2023 (this version, v3)]
Title:Scalable Stochastic Parametric Verification with Stochastic Variational Smoothed Model Checking
View PDFAbstract:Parametric verification of linear temporal properties for stochastic models can be expressed as computing the satisfaction probability of a certain property as a function of the parameters of the model. Smoothed model checking (smMC) aims at inferring the satisfaction function over the entire parameter space from a limited set of observations obtained via simulation. As observations are costly and noisy, smMC is framed as a Bayesian inference problem so that the estimates have an additional quantification of the uncertainty. In smMC the authors use Gaussian Processes (GP), inferred by means of the Expectation Propagation algorithm. This approach provides accurate reconstructions with statistically sound quantification of the uncertainty. However, it inherits the well-known scalability issues of GP. In this paper, we exploit recent advances in probabilistic machine learning to push this limitation forward, making Bayesian inference of smMC scalable to larger datasets and enabling its application to models with high dimensional parameter spaces. We propose Stochastic Variational Smoothed Model Checking (SV-smMC), a solution that exploits stochastic variational inference (SVI) to approximate the posterior distribution of the smMC problem. The strength and flexibility of SVI make SV-smMC applicable to two alternative probabilistic models: Gaussian Processes (GP) and Bayesian Neural Networks (BNN). The core ingredient of SVI is a stochastic gradient-based optimization that makes inference easily parallelizable and that enables GPU acceleration. In this paper, we compare the performances of smMC against those of SV-smMC by looking at the scalability, the computational efficiency and the accuracy of the reconstructed satisfaction function.
Submission history
From: Francesca Cairoli [view email][v1] Wed, 11 May 2022 10:43:23 UTC (755 KB)
[v2] Fri, 14 Oct 2022 12:38:45 UTC (1,532 KB)
[v3] Thu, 6 Apr 2023 10:53:49 UTC (12,511 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.