Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 May 2022 (v1), last revised 16 Aug 2022 (this version, v2)]
Title:MTTrans: Cross-Domain Object Detection with Mean-Teacher Transformer
View PDFAbstract:Recently, DEtection TRansformer (DETR), an end-to-end object detection pipeline, has achieved promising performance. However, it requires large-scale labeled data and suffers from domain shift, especially when no labeled data is available in the target domain. To solve this problem, we propose an end-to-end cross-domain detection Transformer based on the mean teacher framework, MTTrans, which can fully exploit unlabeled target domain data in object detection training and transfer knowledge between domains via pseudo labels. We further propose the comprehensive multi-level feature alignment to improve the pseudo labels generated by the mean teacher framework taking advantage of the cross-scale self-attention mechanism in Deformable DETR. Image and object features are aligned at the local, global, and instance levels with domain query-based feature alignment (DQFA), bi-level graph-based prototype alignment (BGPA), and token-wise image feature alignment (TIFA). On the other hand, the unlabeled target domain data pseudo-labeled and available for the object detection training by the mean teacher framework can lead to better feature extraction and alignment. Thus, the mean teacher framework and the comprehensive multi-level feature alignment can be optimized iteratively and mutually based on the architecture of Transformers. Extensive experiments demonstrate that our proposed method achieves state-of-the-art performance in three domain adaptation scenarios, especially the result of Sim10k to Cityscapes scenario is remarkably improved from 52.6 mAP to 57.9 mAP. Code will be released.
Submission history
From: Jinze Yu [view email][v1] Tue, 3 May 2022 17:11:55 UTC (42,167 KB)
[v2] Tue, 16 Aug 2022 09:55:23 UTC (7,380 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.