Computer Science > Robotics
[Submitted on 26 Apr 2022 (v1), last revised 25 Nov 2023 (this version, v3)]
Title:Collaborative Target Search with a Visual Drone Swarm: An Adaptive Curriculum Embedded Multistage Reinforcement Learning Approach
View PDFAbstract:Equipping drones with target search capabilities is highly desirable for applications in disaster rescue and smart warehouse delivery systems. Multiple intelligent drones that can collaborate with each other and maneuver among obstacles show more effectiveness in accomplishing tasks in a shorter amount of time. However, carrying out collaborative target search (CTS) without prior target information is extremely challenging, especially with a visual drone swarm. In this work, we propose a novel data-efficient deep reinforcement learning (DRL) approach called adaptive curriculum embedded multistage learning (ACEMSL) to address these challenges, mainly 3-D sparse reward space exploration with limited visual perception and collaborative behavior requirements. Specifically, we decompose the CTS task into several subtasks including individual obstacle avoidance, target search, and inter-agent collaboration, and progressively train the agents with multistage learning. Meanwhile, an adaptive embedded curriculum (AEC) is designed, where the task difficulty level (TDL) can be adaptively adjusted based on the success rate (SR) achieved in training. ACEMSL allows data-efficient training and individual-team reward allocation for the visual drone swarm. Furthermore, we deploy the trained model over a real visual drone swarm and perform CTS operations without fine-tuning. Extensive simulations and real-world flight tests validate the effectiveness and generalizability of ACEMSL. The project is available at this https URL.
Submission history
From: Jiaping Xiao [view email][v1] Tue, 26 Apr 2022 09:32:22 UTC (39,498 KB)
[v2] Wed, 27 Apr 2022 06:08:48 UTC (39,498 KB)
[v3] Sat, 25 Nov 2023 07:11:25 UTC (37,232 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.