Mathematics > Numerical Analysis
[Submitted on 23 Apr 2022]
Title:Pre-classification based stochastic reduced-order model for time-dependent complex system
View PDFAbstract:We propose a novel stochastic reduced-order model (SROM) for complex systems by combining clustering and classification strategies. Specifically, the distance and centroid of centroidal Voronoi tessellation (CVT) are redefined according to the optimality of proper orthogonal decomposition (POD), thereby obtaining a time-dependent generalized CVT, and each class can generate a set of cluster-based POD (CPOD) basis functions. To learn the classification mechanism of random input, the naive Bayes pre-classifier and clustering results are applied. Then for a new input, the set of CPOD basis functions associated with the predicted label is used to reduce the corresponding model. Rigorous error analysis is shown, and a discussion in stochastic Navier-Stokes equation is given to provide a context for the application of this model. Numerical experiments verify that the accuracy of our SROM is improved compared with the standard POD method.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.