Mathematics > Numerical Analysis
[Submitted on 22 Apr 2022 (v1), last revised 15 Jul 2022 (this version, v2)]
Title:Bayesian operator inference for data-driven reduced-order modeling
View PDFAbstract:This work proposes a Bayesian inference method for the reduced-order modeling of time-dependent systems. Informed by the structure of the governing equations, the task of learning a reduced-order model from data is posed as a Bayesian inverse problem with Gaussian prior and likelihood. The resulting posterior distribution characterizes the operators defining the reduced-order model, hence the predictions subsequently issued by the reduced-order model are endowed with uncertainty. The statistical moments of these predictions are estimated via a Monte Carlo sampling of the posterior distribution. Since the reduced models are fast to solve, this sampling is computationally efficient. Furthermore, the proposed Bayesian framework provides a statistical interpretation of the regularization term that is present in the deterministic operator inference problem, and the empirical Bayes approach of maximum marginal likelihood suggests a selection algorithm for the regularization hyperparameters. The proposed method is demonstrated on two examples: the compressible Euler equations with noise-corrupted observations, and a single-injector combustion process.
Submission history
From: Shane McQuarrie [view email][v1] Fri, 22 Apr 2022 17:18:12 UTC (2,888 KB)
[v2] Fri, 15 Jul 2022 23:13:45 UTC (2,858 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.