Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Apr 2022]
Title:Are Multimodal Transformers Robust to Missing Modality?
View PDFAbstract:Multimodal data collected from the real world are often imperfect due to missing modalities. Therefore multimodal models that are robust against modal-incomplete data are highly preferred. Recently, Transformer models have shown great success in processing multimodal data. However, existing work has been limited to either architecture designs or pre-training strategies; whether Transformer models are naturally robust against missing-modal data has rarely been investigated. In this paper, we present the first-of-its-kind work to comprehensively investigate the behavior of Transformers in the presence of modal-incomplete data. Unsurprising, we find Transformer models are sensitive to missing modalities while different modal fusion strategies will significantly affect the robustness. What surprised us is that the optimal fusion strategy is dataset dependent even for the same Transformer model; there does not exist a universal strategy that works in general cases. Based on these findings, we propose a principle method to improve the robustness of Transformer models by automatically searching for an optimal fusion strategy regarding input data. Experimental validations on three benchmarks support the superior performance of the proposed method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.